Music Cognition

Author: Susan Rogers | Course Code: OLSOC-307

For many of us, music is a powerful companion through life—in the best and worst of times, and in everything in between. Why is this so? Music Cognition seeks to answer this question and more by exploring the mental processes underlying musical behaviors and how emotion, environment, cognitive capacity, personality, individual differences, and other factors influence how we perceive music. This understanding will bring new insight to music professionals, songwriters, and to music lovers who want to increase their knowledge of, and appreciation for, both music and the brain.

The course starts by teaching the scientific method—important for understanding what research has to say about music and the brain. It explores the nature of mental activities, and the brain and the neural architecture supporting thoughts and emotions. It then delves into how we perceive pitch, rhythm, tonality, and timbre, including distinctions between people who have perfect pitch and those who do not, how our perception of rhythm gives rise to musical expectancies, and how certain cognitive factors promote the development of musical systems.

The course examines human development with regard to how and when musical behaviors emerge and what methods improve musical practice. It takes a close look at musicians’ brains and how they process audio signals differently from non-musicians. It also explores arguments for and against the notion that music-making is an evolutionary adaptation in humans. The course then looks at emotion, memory, and personality, including the link between emotional responses and the acoustic cues in musical signals, strategies the brain uses for memorizing thousands of songs, the role music plays in preserving memories, and the significant ties between personality traits and musical preferences.

Music cognition is a fascinating, growing branch of experimental psychology—one that is shaping not only neuroscience and child development but many areas of the music industry, from music theory, music therapy, and music education to music performance and music production and engineering. Music Cognition students will walk away with a deeper understanding of the complexities of the human brain with regard to music, in addition to developing their critical thinking skills and ability to evaluate scientific findings related to music and the brain.

By the end of the course, you will be able to:

  • Understand the scientific method as applied to experimental psychology
  • Understand the organization and mechanics of the central nervous system
  • Understand the mechanics of human hearing and the auditory pathway
  • Identify the processing stages of sensation, perception, and cognition
  • Identify perceptual processes such as pitch, timbre, duration, and auditory grouping
  • Define the stages of music acquisition
  • Distinguish between innate and acquired differences in musical abilities and in performance effects
  • Identify the acoustical correlates of musical expertise
  • Evaluate evidence for the evolution of the music faculty as separate from language
  • Understand mechanisms of musical emotions
  • Understand memory systems and how they process music
  • Recognize the links between music preferences and personality
  • Understand how musical training in childhood shapes the brain and auditory pathway

Lesson 1: Cognitive Psychology and The Scientific Method

  • Cognitive Psychology: What is the Nature of Mental Activity?
  • Music Cognition: What is Meant by "Musical Behaviors"?
  • The Scientific Method
  • Experimental Psychology: Research Methods and Statistical Analysis

Lesson 2: Neurophysiology of Hearing

  • The Auditory System as an Information Processor
  • The Human Brain
  • Neural Activity
  • The Hearing Mechanism
  • Measuring Neural Activity in Humans: EEG, ERP, MEG, MRI, fMRI, GSR

Lesson 3: Pitch Perception

  • Physical and Psychological Correlates of Pitch
  • Theories of Pitch Perception
  • Neurophysiology of Pitch Perception
  • Absolute Pitch and Amusia

Lesson 4: Auditory Scene Analysis and Rhythm Perception

  • Object Perception: The Gestalt Principles of Organization
  • Auditory Scene Analysis
  • Rhythm Perception and the Internal Clock
  • Rhythm Preferences

Lesson 5: Tonality and Timbre Perception 

  • Implicit Learning and Cognitive Constraints
  • Tonality: Foundational Work
  • Innate Concepts of Tonality
  • The Effect of Spectrum on Timbre
  • Psychological Correlates of Timbre

Lesson 6: Musical Development

  • Music and Language Development
  • Testing Infants: Some Experimental Findings
  • Lullabies and Playsongs
  • Experimental Methods

Lesson 7: Musical Expertise and Performance

  • Musical Performance
  • Acoustic Correlates of Expressivity
  • Musical Errors and Learning
  • Musical Practice

Lesson 8: Music and Evolution 

  • Evolutionary Adaptations
  • Advantages of Music
  • Music and Language
  • A Music Module * Williams Syndrome

Lesson 9: Music and Emotion

  • The Study of Music and Emotion
  • Emotions
  • Emotional vs. Non-Emotional Music
  • Musical Emotions and Physiology

Lesson 10: Music and Memory

  • What is Memory?
  • Types of Memory Processes
  • Memory for Music
  • Mental Imagery
  • Neural Activity and Musical Memory
  • Long- and Short-Term Musical Memory
  • STM for Musical Intervals

Lesson 11: Music and Personality

  • Communicating Through Music Preferences
  • Music Preference Dimensions
  • Music Preferences and Personality

Lesson 12: Individual Differences and Outstanding Questions

  • The Brain of Musicians
  • Morphological Differences
  • Differences in Children
  • Cognitive Differences
  • Outstanding Questions and Challenges

Susan Rogers

Author & Instructor

Susan Rogers holds a Doctorate in Psychology from McGill University (2010) where she studied music cognition and psychoacoustics under researchers Daniel Levitin and Stephen McAdams. Her research focuses on auditory memory, the perception of musical signals and the influence of musical training on auditory development. For two decades prior to her science career, Susan was one of the world's few women known for her work as a record producer, engineer, mixer, and audio electronics technician. Career highlights include 5 years (1983-1988) as staff engineer for recording artist Prince; producing hit singles for diverse artists such as Barenaked Ladies, David Byrne, Geggy Tah, Robben Ford, Jeff Black, and Rusted Root; mixing hit singles for an equally eclectic list including Tricky, Michael Penn, Toad the Wet Sprocket, and Tevin Campbell; engineering for a host more.

Susan is an Associate Professor at Berklee College of Music in the departments of Music Production & Engineering and Liberal Arts, and is the director of the Berklee Music Perception and Cognition Laboratory. In 2012 she was awarded the Distinguished Faculty Award, Professional Writing and Music Technology Division.

In tandem with business partner and former student Matthew McArthur (Berklee '10), Susan launched Boston's first not-for-profit recording studio, The Record Company, to offer low-cost recording facilities to area musicians and free music technology instruction to area teens (http://www.therecordco.org).

Prerequisites

None required


Required Textbook

Music, Thought, and Feeling: Understanding the Psychology of Music by William Forde Thompson, Oxford University Press


Software Requirements

  • Mac Web Browser: Firefox (Recommended), Chrome, or Safari
  • PC Web Browser: Firefox (Recommended), Chrome, Internet Explorer, or Edge
  • Flash Player (if using the Record Live tool)

Hardware Requirements

Mac Users

  • OS X 10.7 or higher
  • 2 GB RAM
  • 500 MB hard drive space
  • Sound card
  • Speakers or headphones
  • Webcam

PC Users

  • Windows Vista SP2 or higher
  • Intel Pentium 4 or higher
  • 1 GB RAM
  • 500 MB hard drive space
  • Sound card
  • Speakers or headphones 
  • Webcam

Comments

Got a question? Contact our Academic Advisors by phone at 1-866-BERKLEE (U.S.), 1-617-747-2146 (INT'L), or by email at advisors@online.berklee.edu. We can also answer basic questions in the comments below. Please note that all comments are public.



Next Term Starts September 26


  • Level
  • Duration
    12 weeks
  • 3-Credit Tuition
    $1,479
  • or
  • Non-Credit Tuition
    $1,229

Contact an Advisor

Mon-Thu, 9AM-8PM ET
Fri, 9AM-5PM ET
Call or Text Us at

US: 1-866-BERKLEE
Int'l: +1-617-747-2146


Create a Free Account

Secure form. Berklee Online will not sell or rent your email address to third parties.
Our privacy policy
Sample a Lesson